Extensions 1→N→G→Q→1 with N=C22×Dic3 and Q=C6

Direct product G=N×Q with N=C22×Dic3 and Q=C6
dρLabelID
Dic3×C22×C696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C22×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C22×Dic3)⋊C6 = A4×C3⋊D4φ: C6/C1C6 ⊆ Out C22×Dic3366(C2^2xDic3):C6288,928
(C22×Dic3)⋊2C6 = C4×S3×A4φ: C6/C2C3 ⊆ Out C22×Dic3366(C2^2xDic3):2C6288,919
(C22×Dic3)⋊3C6 = C2×Dic3×A4φ: C6/C2C3 ⊆ Out C22×Dic372(C2^2xDic3):3C6288,927
(C22×Dic3)⋊4C6 = C3×Dic34D4φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):4C6288,652
(C22×Dic3)⋊5C6 = C3×C23.21D6φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):5C6288,657
(C22×Dic3)⋊6C6 = C6×D6⋊C4φ: C6/C3C2 ⊆ Out C22×Dic396(C2^2xDic3):6C6288,698
(C22×Dic3)⋊7C6 = C3×D4×Dic3φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):7C6288,705
(C22×Dic3)⋊8C6 = C3×C23.23D6φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):8C6288,706
(C22×Dic3)⋊9C6 = C3×C23.14D6φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):9C6288,710
(C22×Dic3)⋊10C6 = C6×C6.D4φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):10C6288,723
(C22×Dic3)⋊11C6 = C6×D42S3φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):11C6288,993
(C22×Dic3)⋊12C6 = C2×C6×C3⋊D4φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3):12C6288,1002
(C22×Dic3)⋊13C6 = S3×C22×C12φ: trivial image96(C2^2xDic3):13C6288,989

Non-split extensions G=N.Q with N=C22×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C22×Dic3).C6 = A4×Dic6φ: C6/C1C6 ⊆ Out C22×Dic3726-(C2^2xDic3).C6288,918
(C22×Dic3).2C6 = C3×C6.C42φ: C6/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).2C6288,265
(C22×Dic3).3C6 = C3×C23.16D6φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3).3C6288,648
(C22×Dic3).4C6 = C3×Dic3.D4φ: C6/C3C2 ⊆ Out C22×Dic348(C2^2xDic3).4C6288,649
(C22×Dic3).5C6 = C6×Dic3⋊C4φ: C6/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).5C6288,694
(C22×Dic3).6C6 = C6×C4⋊Dic3φ: C6/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).6C6288,696
(C22×Dic3).7C6 = C2×C6×Dic6φ: C6/C3C2 ⊆ Out C22×Dic396(C2^2xDic3).7C6288,988
(C22×Dic3).8C6 = Dic3×C2×C12φ: trivial image96(C2^2xDic3).8C6288,693

׿
×
𝔽